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Large deviations of the average shapes of vesicles from equilibrium:
Effects of thermal fluctuations in the presence of constraints
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In the absence of external stresses, the surface area and the volume of a closed, flaccid lipid vesicle are
practically constant. Thermal shape fluctuations of vesicles that are subject to these constraints recently have
been shown to induce a shift of the average shapes away from the equilibrium~zero temperature! shapes. Since
only the average shapes can be determined from observations by optical microscopy, it is important to establish
the magnitude of their deviation from the well-studied equilibrium shapes. In this paper we develop a formal-
ism to calculate this thermal shift, and we demonstrate that nonlinearities in the constraints may cause it to be
unexpectedly large. Allowing for arbitrary shape deformations, we present numerical calculations revealing a
logarithmic dependence of the thermal shift on the number of fluctuational degrees of freedom of the vesicle
membrane or, equivalently, on the number of lipid molecules constituting the membrane. As a consequence,
the surface area~‘‘projected area’’! and, to a lesser extent, the volume~‘‘projected volume’’! of the average
shape are smaller than their true values. These numerical results are in general agreement with theoretical
predictions that have been made so far only for pieces of flat membranes but not for closed lipid membranes
subject to the constraints of both constant area and volume. Furthermore, we derive an expression for the
correlation function of deviations from equilibrium including terms of the order of (kBT)

2 that involve the
~quadratic! thermal shift. We demonstrate that these terms may actually exceed the commonly used leading
term of the correlation function. This analysis suggests that the determination of the membrane bending
moduluskc from observations of thermal vesicle shape fluctuations should be based on the variances rather
than the correlation functions.@S1063-651X~97!05902-3#

PACS number~s!: 87.10.1e, 05.40.1j, 68.10.2m
io
a

cr
le
ic
e
ta
r

e
n
e
on
icl
a
at
p
s
ee

u
T
in

s,
-
may

asis
ver-
eir
u-

e-

e
lues
n
ges
ed

a-
e

er
, to
pla-
ular
sicle
bits,
mal
ions
I. INTRODUCTION

Flaccid phospholipid vesicles with volume-to-area rat
smaller than that of a sphere are known to exhibit therm
shape fluctuations that can be observed in an optical mi
scope@1#. While the different shapes of a fluctuating vesic
are governed by the elastic bending energy of the ves
membrane, both its membrane area, as well as the volum
the enclosed aqueous solution, remain practically cons
during observation. Such a vesicle is a typical example fo
thermally excitable system that is subject to constraints@1,2#.
Vesicle shape fluctuations have been intensively studied
perimentally, mainly to deduce the value of the membra
bending moduluskc @3#. The models used to interpret th
experimental observations were usually based on a sec
order expansion in terms of the deviations of the ves
shape from a sphere, thus restricting the analysis to ne
spherical vesicles. Mathematical methods of much gre
generality have been applied to study the equilibrium sha
of vesicles@4,5#. The results have been arranged in a ‘‘pha
diagram’’ of equilibrium shapes that is in reasonable agr
ment with experimental observations@6,7,5#. On the other
hand, general theoretical studies of the effect of thermal fl
tuations on the vesicle shape have long been missing.
complications that arise from the presence of constra

*FAX: ~1386 61! 131-51-27. Electronic address:
volkmar@sizif.mf.uni-lj.si
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only recently have been tackled theoretically in variou
more systematic ways@8,2#. It was predicted that in the pres
ence of constraints, a vesicle’s thermal average shape
deviate from the equilibrium shape~‘‘thermal shift’’ ! @2#.
Expanding the vesicle shape in a series of independent b
functions, the thermal shift may be represented by the a
age deviations of the amplitudes of basis functions from th
equilibrium values. The lowest-order nonvanishing contrib
tion to this shift has been shown to be proportional tokBT.
Since the leading term for a ‘‘typical fluctuation’’~square
root of the amplitude-amplitude correlation function of d
viations from equilibrium! is of the order ofAkBT, it was
argued@2# that the thermal shift should be small. On th
contrary, we present numerical results revealing large va
of the linear shift in the symmetry-conserving fluctuatio
modes. Moreover, we demonstrate that the shift diver
logarithmically as the number of fluctuation modes includ
in the calculations is increased.

To understand this effect of short-wavelength fluctu
tions, it is useful to recall first that for typical values of th
membrane bending modulus [kc'(10–40)kBT] the persis-
tence length@9# of a phospholipid membrane is much larg
than the characteristic vesicle size. It is justified, therefore
treat the bilayer membranes considered here as ‘‘almost
nar’’ surfaces in the sense that they maintain a certain reg
mean shape. Nevertheless, on a microscopic scale a ve
membrane represents a highly dynamic system that exhi
due to its small resistance to bending, permanent ther
undulations about the mean shape. Most of these undulat
1809 © 1997 The American Physical Society
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1810 55HEINRICH, SEVŠEK, SVETINA, AND ŽEKŠ
are too fast and too small in amplitude to be resolved i
light microscope. Yet one has to be aware that an imag
an apparently smooth vesicle membrane comprises a l
number of superimposed ‘‘microstates’’ where each stat
characterized by a differently curved membrane. Althou
the curvatures involved may be small, the contributions
the large number of independent fluctuation modes sum u
result in a considerable vesicle-size-dependent reductio
the visible, apparent membrane area. This entropic effect
been noted quite some time ago, and it has been studie
detail for flat pieces of nonstretchable membrane@10–13#
but not yet for closed membranes including simultaneou
both constraints of membrane area and vesicle volume. C
sidering an isolated membrane piece, it was shown that
amount of membrane area that is taken up by mostly in
ible, short-wavelength undulations depends logarithmica
on the number of fluctuation modes@10–13#. As a conse-
quence, a logarithmic correction of the bending modulus w
predicted@11–13#. Incorporating the decrease of effectiv
area into force balance equations via an ‘‘entropic tensio
the bending modulus of lipid membranes could be dedu
from low-pressure aspiration of vesicles into micropipet
@14#.

In these studies, the effective reduced area was take
be the mean area of the ‘‘projection’’ of the fluctuating me
brane piece onto a plane, resulting in the notion of the ‘‘p
jected area.’’ Naturally, this plane projection is also theav-
erage shapeof the membrane piece. Analogously, w
identify a vesicle’s projected area with the area of its therm
average shape, while the volume of the average shap
taken to be the ‘‘projected vesicle volume.’’ In this paper, w
set up a numerical formalism to obtain the average ves
shape by calculating the expectation values of the amplitu
of the chosen set of basis functions describing the ves
shape. This is done in two steps. First, the equilibrium sh
is obtained by minimizing the membrane bending energy
constant values of membrane area and vesicle volume.
ond, the linear averages of those deviations from the equ
rium shape that conserve both constraints are calcula
Both parts of the calculation are carried out using con
tently the same set of basis functions. This calculation gi
us, at the same time, the values of the projected memb
area and the projected vesicle volume as well as their lo
rithmic dependence on the number of fluctuation modes.

As another important consequence of the large ther
shift, we reconsider the calculation of the correlation fun
tion @15# of a fluctuating vesicle. The shift may be expect
to enter this function in terms that are of higher order th
the commonly used leading term proportional tokBT. We
outline a procedure to calculate the (kBT)

2 contributions to
the correlation function that contain the shift quadratica
and we show that they may indeed exceed the leading te
This procedure enables us to evaluate correctly the vis
shape fluctuations represented by the mean-square devia
from the mean shape~variances!.

The paper is organized as follows. In Sec. II we outli
the theoretical basis for our treatment of constrained fluc
tions in general terms and we derive the expressions to
culate the thermal shift as well as the correlation functi
The application of this formalism to the numerical compu
tion of the thermal average shape of a fluctuating vesicl
a
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explained in Sec. III. Section IV presents the numerical
sults and discusses implications for related experiments.
followed by a short conclusion given in Sec. V.

II. CONSTRAINED FLUCTUATIONS

The problem of constrained fluctuations is not specific
vesicle shapes; therefore, we will explain our treatment
general terms in the following. We start from an energy p
tentialW5W(x1 ,...,xn) anda constraints~a,n! given by
Dj (x1 ,...,xn)50 ~j51,...,a!. In the case of vesicle shap
fluctuations, the variables (x1 ,...,xn) will be the amplitudes
of independent, orthonormal basis functions. For a phys
system in general, we identify them with Cartesian coor
nates in ann-dimensional Euclidean phase space with ba
vectorsi i ( i51,...,n).

The states within this phase space that simultaneously
isfy all a constraints form the~n2a!-dimensional subspac
of accessiblestates, meaning that the system is bound
move exclusively within this subspace. Considering only
energies associated with points in this subspace, an equ
rium state is characterized by a minimum of the energyW
with respect to any otheraccessiblestate in the vicinity of
this point. We assume that the subspace of accessible s
is ‘‘well behaved’’ near equilibrium, i.e.~in the language of
differential geometry!, that it is an~n2a!-dimensional Rie-
mannian manifoldMn2a that is continuous and differen
tiable at least to order 3~a ‘‘hypersurface’’ embedded in the
n-dimensional phase space!. This hypersurface is represente
in parameter form by

S~q1 ,...,qn2a!5x1~q1 ,...,qn2a!i1

1•••1xn~q1 ,...,qn2a!in , ~1!

where theqk (k51,...,n2a) are affine curvilinear coordi-
nates adopted to this surface. The origin of the new refere
frame is chosen at the equilibrium point~denoted below by
the index 0!, so that the equilibrium state is represented
S~0, . . . ,0!.

For the treatment of thermal fluctuations we need to c
sider only small deviations from equilibrium. Thus we ma
replace the functionsxi(q1 ,...,qn2a) @i51,...,n; Eq. ~1!# by
their expansions around the equilibrium point. For reas
that will become evident below, this expansion is made up
the third-order terms inqk , i.e.,

Dxi~q1 ,...,qn2a!5 (
k

n2a

ak
i qk1

1
2 (

k1

n2a

(
k2

n2a

bk1k2
i qk1qk2

1 1
6 (

k1

n2a

(
k2

n2a

(
k3

n2a

ck1k2k3
i qk1qk2qk3,

~2!

with the expansion coefficientsa k
i [(]xi /]qk) u0, bk1k2

i

[(]2xi /]qk1]qk2)u0, and ck1k2k3
i [(]3xi /]qk1]qk2]qk3)u0.

~Here and in the following we denote byD the deviations
from equilibrium. Furthermore, throughout the paper t
starting index of all sums is 1 and is omitted.! Based on Eq.
~2!, we are able to express both the thermal shift^Dxi& as
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55 1811LARGE DEVIATIONS OF THE AVERAGE SHAPES OF . . .
well as the correlation function̂Dxi1Dxi2& in terms of ex-
pectation values involving only the new coordinatesqk .

So far, the expansion coefficientsa k
i , bk1k2

i , andck1k2k3
i

define curvilinear coordinatesqk spanning an arbitrary
~n2a!-dimensional surface containing the equilibrium poi
By imposing appropriate conditions on these expansion
efficients, we will, in the following,~i! ensure that the state
forming this surface fulfill the constraints,~ii ! choose suit-
able directions for~the tangents to! the coordinatesqk at
equilibrium, and~iii ! ensure that the coordinatesqk are or-
thonormal. The first requirement is fulfilled~up to third order
at equilibrium! if the first, second, and third derivatives of a
constraintsD̃ j with respect to theqk vanish at equilibrium.
~The tilde is used to denote the functional dependence
qk .! Thus

]D̃ j

]qk
U
0

5(
i

n
]Dj

]xi
U
0

ak
i 50, ~3a!

]2D̃ j

]qk1]qk2
U
0

5(
i1

n

(
i2

n
]2Dj

]xi1]xi2
U
0

ak1
i1ak2

i21(
i

n
]Dj

]xi
U
0

bk1k2
i 50,

~3b!

and

]3D̃ j

]qk1]qk2]qk3
U
0

5(
i1

n

(
i2

n

(
i3

n
]3Dj

]xi1]xi2]xi3
U
0

ak1
i1ak2

i2ak3
i3

1(
i

n
]Dj

]xi
U
0

ck1k2k3
i 1(

i1

n

(
i2

n
]2Dj

]xi1]xi2
U
0

3~ak1
i1bk2k3

i2 1ak2
i1bk1k3

i2 1ak3
i1bk1k2

i2 !50,

~3c!

where j51, . . . ,a andk, k1,2,351,...,n2a.
Through the functionsDxi(q1 ,...,qn2a) @Eq. ~2!# the

thermal energy of accessible states may be expressed
function of new coordinatesDW̃5DW̃(q1 ,...,qn2a). As-
suming thatthis energy potential~i.e., of accessible states!
has a harmonic shape near equilibrium, we neglect
higher-than-second-order terms in the energy expan
around equilibrium. For arbitrarily chosen coordinatesqk ,
the matrix of second derivatives of the energy with respec
those deviations that conserve the constraints~i.e., with re-
spect to theqk! is then diagonalized. Suppose we have ch
sen the coordinatesqk in such a way that this matrix is al
ready diagonal@by requiring that the tangent vectors
equilibrium, ~]S/]qk!u0, have the same directions as th
eigenvectors of this matrix#. Then, (]2W̃/]qj]qk)u05d jkgk ,
where thegk denote the eigenvalues, and

DW̃~q1 ,...,qn2a!5 1
2 (

k

n2a

gkqk
2. ~4!

The calculation of the eigenvaluesgk is consistent with a
second-order expansion of the constraints. Thus it would
quire one to include only the terms up to second order inqk
in the expansion~2!. However, in the following we will in-
.
o-

n
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ll
n

o
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clude all those terms@up to the order of (kBT)
2# in the cal-

culation of the correlation function that originate from up
fourth-order deviations in the space ofqk , which makes it
necessary to include also the third-order terms in the exp
sion ~2!.

Assuming that the states allowed by the constraints
homogeneously distributedwithin the hypersurface of acces
sible states, the average of an arbitrary functionf (x1 ,...,xn)
over all accessible states is given by

^ f &5

E
Mn2a

f̃ exp~2bDW̃!dq

E
Mn2a

exp~2bDW̃!dq

. ~5!

@The probability of an accessible state has been assume
be given by the Boltzmann distribution, i.e.,b[1/kBT, and
dq[dq1dq2•••dqn2a .# Note that Eq.~5! is only correct if
the volume element in theq space does not depend on th
position within this space. This is achieved by requiring th
the coordinatesqk form an orthonormal coordinate system
every point of theq space or, in other words, that the tange
vectors]S/]qk be everywhere orthonormal. It would be cum
bersome to enforce this condition strictly; instead, we w
require orthonormality ‘‘up to third order’’ at equilibrium
Thus we require~]S/]qk•]S/]qj !u05djk ~the orthogonality
part of this condition is already contained in the requirem
that the directions of tangent vectors at equilibrium coinc
with those of eigenvectors! and, furthermore, that the firs
and second derivatives of this orthonormality condition va
ish at equilibrium. The resulting conditions for the expansi
coefficients a k

i , bk1k2
i , and ck1k2k3

i read ~where k1,2,3,4
51,...,n2a!

(
i

n

ak1
i ak2

i 5dk1k2, ~6a!

(
i

n

ak1
i bk2k3

i 50, ~6b!

(
i

n

~bk1k2
i bk3k4

i 1ak1
i ck2k3k4

i !50. ~6c!

Eventually, by combining the conditions~3a!–~3c! and~6a!–
~6c! with our choice for the directions of tangent vectors
equilibrium, the system of curvilinear coordinatesqk has
been completely defined.

Identifying f̃ in Eq. ~5! with Dxi , replacingDxi by the
expansion~2!, inserting Eq.~4!, and evaluating the resulting
integrals up to the second order inq, the thermal shift in the
original Cartesian coordinates is obtained up to terms of
order ofkBT as

^Dxi&5
kBT

2 (
k

n2a bkk
i

gk
. ~7!

In the same way, but including also the (kBT)
2 terms gener-

ated by fourth-orderq terms, the correlation function is
found to be
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^Dxi1Dxi2&5kBT(
k

n2a ak
i1ak

i2

gk
1

~kBT!2

2 (
k1

n2a

(
k2

n2a ak1
i1ck1k2k2

i2 1ak1
i2ck1k2k2

i1 1bk1k2
i1 bk1k2

i2 1 1
2bk1k1

i1 bk2k2
i2

gk1
gk2

5kBT(
k

n2a ak
i1ak

i2

gk
1^Dxi1&^Dxi2&1

~kBT!2

2 (
k1

n2a

(
k2

n2a ak1
i1ck1k2k2

i2 1ak1
i2ck1k2k2

i1 1bk1k2
i1 bk1k2

i2

gk1
gk2

. ~8!
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These results illustrate how nonlinearities in the co
straints may qualitatively affect the behavior of the syste
The first-order coefficientsa k

i , which are determined by th
linearized constraints, define the~n2a!-dimensional tangen
‘‘plane’’ to the hypersurface of accessible states at equi
rium, i.e., the tangent space that is spanned by the eigen
tors of the matrix of second derivatives of the energy w
respect to deviations that conserve the constraints. This
gent space represents a first-order approximation to the
persurface of accessible states and it is related to any~n2a!-
dimensional subspace spanned by a subset of orig
Cartesian coordinatesxi by a mere linear transformation. O
the other hand, whenever the constraints are nonlinear
hypersurface of accessible states iscurved. In this case, pro-
jections of the accessible states~which were assumed to b
homogeneously distributed within this hypersurface! onto
the Cartesian coordinate axesxi result in anonuniform den-
sity of ~projected accessible! states along these axes. Th
effect causes the energy potential to be asymmetric with
spect to thexi , which results in the nonvanishing therm
shift. It is important to note that this effect is purely ge
metrical, i.e., it depends only on the shape of the hyper
face of accessible states but not on the temperature. M
ematically, this effect is reflected by the higher-than-fir
order coefficients in the nonlinear transformation Eq.~2!.

The fact that the thermal shift is proportional tokBT,
whereas a ‘‘typical fluctuation’’ given by the leading term
^Dxi1Dxi2&

1/2 is of the order of (kBT)
1/2, has led to the con-

clusion @2# that the shift is small. However, given that th
shift @Eq. ~7!# and the leading term of the correlation fun
tion @Eq. ~8!# depend on different, independent coefficien
it is important to establish also the magnitudes of these
efficients. In the case of vesicle shape fluctuations, we h
found that for some values ofi and k the coefficientsb kk

i

may actually be two orders of magnitude larger than thea k
i .

In this case, the nonlinearities in the constraints gene
quite large values of the thermal shift. These nonlineari
do not enter the leading term of the correlation function,
one would expect that in this case, they also have a sig
cant effect on this function. To establish the importance
this effect, we have included the (kBT)

2 terms in the deriva-
tion of Eq.~8!. The result shows that the thermal shift affec
the correlation function directly in form of the produc
^Dxi1&^Dxi2&. These products may not be neglected if t
shift is large. On the other hand, we will assume in the f
lowing that the nonlinearities of the constraints are rep
sented to a good approximation by the second-order co
cientsb kk

i , and we will not attempt to include terms of eve
higher order~which would be practically impossible in th
numerical calculations!. For vesicle shape fluctuations, w
-
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have calculated for a few representative examples also
coefficientsbk1k2

i with k1Þk2 , and we found them to be

always significantly smaller than the values of theb kk
i . For

these reasons it seems to be justified to assume that the
(kBT)

2 term on the right-hand side of Eq.~8! is small com-
pared to the sum of the other two contributions, and so
will omit it in the following.

III. AVERAGE VESICLE SHAPE

Let us now apply this theoretical framework to the calc
lation of the average shape of a fluctuating vesicle. We c
sider vesicle shapes ofarbitrary symmetry, with the only
restriction that the shapes are single-valued functions of
spherical angles. Then, the shape can be described by
functionR5R~q,w!, whereR points from the origin of the
reference frame~suitably chosen inside the vesicle! to the
vesicle surface. This shape function is expanded in the se

R~q,w!5 (
i

~ lmax11!2

Xipi~q,w!, ~9!

where pi~q,w! are the functions of the complete s
$Yl0, Re~&Ylm!,Im~&Ylm!% of real, orthonormal basis func
tions derived from the spherical harmonicsYlm , and lmax is
the cutoff of the expansion if expressed in terms of the la
functions. The energy governing different vesicle shape
the membrane bending energy@16,6#. It is the sum of a local
and a nonlocal contribution@17# and, in general, both affec
the shape fluctuations. However, in those regions in
phase diagram of equilibrium shapes where the nonlo
bending energy is zero or small, its effect on the shape fl
tuations is very small as well and may be neglected. In t
study we restrict our treatment to this region and do
include nonlocal bending effects. The remaining local be
ing energy reads for symmetric bilayer membranes

W5 1
2kcE ~C11C2!

2dA, ~10!

wherekc is the~local! membrane bending modulus,C1,2 are
the principle curvatures, and integration is performed o
the closed vesicle surface. Expressing this energy as we
the constraints of constant membrane area~put in the form
D1[A2A050! and constant vesicle volume (D2[V
2V050) in terms of the shape functionR~q,w! @5#, we ar-
rive at the task to calculate fluctuations of a system w
energy W5W(X1 ,...,Xn) and with two constraints
D1,2(X1 ,...,Xn)50, which interrelate then5~lmax11!2 am-
plitudesXi of the basis functions of the shape expansion@Eq.
~9!#. As usual, we introduce dimensionless quantities b
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55 1813LARGE DEVIATIONS OF THE AVERAGE SHAPES OF . . .
normalization with respect to a sphere~with radiusRS! hav-
ing the same surface area as the vesicle. To distinguish
malized quantities from the respective original ones, we
note all normalized quantities by small letters. Thus,
example, the energyw is measured in units of 8pkc , while
r[R/RS , xi[Xi /RS , ci[CiRS , etc.

As the first step, we calculate the equilibrium shape
given membrane area and vesicle volume. For a given se
xi , the values of model quantities~energy and constraints!
and, as needed, of their first and second derivatives w
respect toxi are calculated numerically by a two-dimension
integration over the full solid angle. Using the generaliz
energy function

w*5w1(
j

2

l jdj ~11!

that includes the constraints via Lagrange multiplierslj , the
equilibrium values of amplitudesxi and of Lagrange multi-
pliers are obtained by the Ritz method described in deta
@5#.

To compute the thermal shift^Dxi&, we have to calculate
the eigenvaluesgk as well as the coefficientsb kk

i @Eq. ~7!#,
whereas the third-order coefficientsck1k2k3

i are not needed. In

the practical calculations we first choose arbitrarily a so
tion out of the solution space of the~underdetermined! con-
ditions ~3a! and ~6a!. This solution space is most efficientl
obtained by singular value decomposition of the 23n matrix
with elements (]dj /]xi) u0. The chosen solution represents
preliminary set of first-order coefficients denoted byā k

i . Im-
posing condition~3b! on preliminary second-order coeffi
cients b̄k1k2

i , making use of the equilibrium condition, an

introducing the generalized energyw* @Eq. ~11!#, the second
derivatives of the energy with respect to the~preliminary!
affine coordinatesq̄k are found to be

wk1k2
[

]2w̃

]q̄k1]q̄k2
U
0

5(
i1

n

(
i2

n
]2w*

]xi1]xi2
U
0

āk1
i1 āk2

i2 .

Next, the matrix with elementswk1k2
is diagonalized, which

gives the eigenvaluesgk @Eqs.~4! and~7!#, while the eigen-
vectors determine the directions of tangent vectors to
subspace of accessible states at equilibrium. Thus the
first-order coefficients are given by

ak
i 5 (

j

n22

ā j
i ejk ,

where ejk is the j th element of thekth eigenvector. The
coefficientsb kk

i are then obtained from the systems of line
equations given by conditions~3b! and ~6b!. Finally, inser-
tion of the results into Eq.~7! ~wherekBT is now divided by
8pkc! gives the thermal shift. It has been noted before@2#
that contributions involving the zero eigenvalues correspo
ing to rigid-body motions have to be excluded from the s
in Eq. ~7!.

Then, the average vesicle shape is given by@cf. Eq. ~9!#
or-
-
r

t
of

th
l
d

in

-

e
al

r

-

^r ~q,w!&5(
i

n

~xi u01^Dxi&!pi~q,w!, ~12!

where, as before,n5~lmax11!2. The mean-square deviatio
of the shape functionr ~q,w! from its mean~variance! is

Š~r2^r &!2‹5^r 2&2^r &2

5(
i1

n

(
i2

n

~^Dxi1Dxi2&

2^Dxi1&^Dxi2&!pi1~q,w!pi2~q,w!.

Using Eq.~8! and neglecting the last term on its right-han
side, we find

Š~r2^r &!2‹5
kBT

8pkc
(
i1

n

(
i2

n

pi1~q,w!pi2~q,w! (
k

n22 ak
i1ak

i2

gk
.

~13!

The square root of this expression gives the standard de
tion of the shape function as a function of the spheri
angles; it is a measure for the mean width of fluctuations
each point of the vesicle membrane.

Following Ref.@10#, we call the area of the average sha
‘‘projected area’’ ^Ap&, while the volume of the averag
shape is called ‘‘projected volume’’ and is denoted by^Vp&.
The normalized deviations of these two quantities from th
equilibrium values are given up to the order ofkBT by

^Dap&5(
i

n
]d1
]xi

U
0

^Dxi&, ^Dvp&5(
i

n
]d2
]xi

U
0

^Dxi&. ~14!

Here ^vp&5^Vp&/
4
3pRS

3, whereas the apparent relative vo
ume is defined with respect to a sphere whose surface ar
the apparent projected area^Ap&. Denoting byR̂S the radius
of this sphere, this apparent relative volume is

^v̂p&5
^Vp&
4
3pR̂S

3
5~v01^Dvp&!S RS

R̂S
D 3

5
v01^Dvp&

~11^Dap&!3/2
>v01^Dvp&2 3

2v0^Dap&. ~15!

IV. NUMERICAL RESULTS AND DISCUSSION

Our numerical calculations concentrate on the shape fl
tuations of vesicles with relative volumesv0 ranging from
0.8 to 0.95. The equilibrium shapes of these vesicles
axisymmetric with an additional reflection plane containi
the equator. The membrane bending modulus is taken to
kc510219 J, a typical value for phospholipid bilayers@18#.
The temperature is chosen to beT5293 K. In the numerical
computations, the largest possible value of the cutofflmax of
the expansion of the shape function Eq.~9! is limited by the
available computer memory. Presently, we are able to
lmax values up to 25.

Before turning to the calculation of the thermal shift it
useful first to rule out possible effects of an insufficient a
curacy of the method due to too small values oflmax. This
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can be done by inspecting the smaller eigenvaluesgk @Eq.
~4!#, which should not depend onlmax. For axisymmetric
shapes there are five zero eigenvalues corresponding to r
body motions. We have ‘‘tuned’’ the accuracy of our n
merical computations such that atv050.95, the calculated
values of these five eigenvalues are forlmax>15 all smaller
than 1027. Another characteristic of axisymmetric shapes
that all eigenvalues corresponding to deformations break
the rotational symmetry~i.e., mÞ0 deformations! are two-
fold degenerate, which is due to the equivalence of defor
tions in the directionsw50 andp/2, respectively. Figure 1
shows the smallestnonzero eigenvalues~i.e., those that
dominate the near-equilibrium behavior of the fluctuati
shape! calculated forv050.95 as functions oflmax. It is seen
that already atlmax56 the ‘‘true’’ values of these eigenvalue
are reproduced with a very high accuracy. By inspectingall
~lmax11!222 eigenvalues as computed for differentlmax val-
ues we found that most eigenvalues remain unaffected b
increase oflmax. Only those 4lmax eigenvalues that are th
largest ones at a givenlmax experience a noticeable corre
tion when their values are computed at the next higher va
of lmax. However, these eigenvalues are so large~their values
being of the order ofl max

4 ! that they matter little for the
fluctuations. It should be mentioned that at lower relat
volumes, the eigenvalues ‘‘stabilize’’ only at higher valu
of lmax. For example, atv050.8 any result obtained with
lmax,16 will involve significant uncertainties caused by
inaccurate assessment of the true eigenvalues. This s
what restricts also the applicability of the present method
vesicles with relative volumesv0>0.8, although principally

FIG. 1. Smallest nonzero eigenvaluesgk of the matrix of second
derivatives of the normalized bending energy with respect to de
mations that conserve the constraints, as obtained at different v
of the cutoff lmax of the shape expansion. Twofold degenerate
genvalues are marked by filled circles. These values were calcu
for an axisymmetric equilibrium shape with a relative volum
v050.95. Physically, the eigenmodes of an axisymmetric equi
rium shape group into sectors that are characterized by a g
value of umu and either all possible even or all possible oddl ’s. If
the eigenvalues are numbered in ascending order, the first five
respond to rigid-body motions and are zero~not shown!. The pair of
the smallest two nonzero eigenvalues@series (a)# corresponds to
umu52, even-l deformations breaking the rotational symmetry
the direction of shapes with symmetryD2h. The next eigenvalue
@represented by open circles, series (b)# corresponds to them50,
odd-l deformation breaking the up-down mirror symmetry a
leading to pearlike shapes.
id-
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one could extend~at the cost of computer time and memo
usage! the range of volumes down tov0'0.6 by using higher
values oflmax. Relative volumes smaller thanv0'0.6 cannot
be considered because of the limitation of the present me
to shapes that are single-valued functions of the spher
angles.

Using Eq. ~7! we have calculated the thermal shifts
different values oflmax. For an equilibrium shape of given
symmetry, linear net shifts occur only in the symmetr
conserving modes~cf. @2#! because all symmetry-breakin
fluctuations ‘‘average out.’’ For the axisymmetric equilib
rium shapes considered here, the symmetry-conser
modes are characterized bym50 and even values ofl . Iden-
tifying the indicesi of amplitudesxi of these modes with the
corresponding pairs (2j ,0) of indices of spherical harmonic
Y2 j ,0, Fig. 2 shows forj50, . . . ,4 thethermal shifts obtained
at v050.95 as functions of the natural logarithm oflmax. It is
clearly seen that the thermal shift in these modes depend
lmax. This can be understood by taking into account that
nonlinear constraints, adding degrees of freedom by incre
ing lmax results in an uneven change of the density of p
jected~accessible! states along the Cartesian coordinate a
xi . Since, in general, more states are added at a dista
from equilibrium than in its close vicinity, the~absolute!
thermal shift increases withlmax. By inspecting the values o
the coefficientsb kk

i we found thatevery added degree o
freedom affects, through the nonlinear constraints, the sh
in all symmetry-conserving modes. For the modes depic
in Fig. 2, the shift is already quite large at the highestlmax
value used. It is worth comparing the squares of these t
mal shifts^Dx(2 j ,0)&

2 with the lowest-order contributions to
the mean squareŝDx (2 j ,0)

2 &. The latter values are readil
obtained from the first term on the right-hand side of Eq.~8!.
For j50,1,2 the leading terms of the mean squares are fo
to be smaller than the respective values of^Dx(2 j ,0)&

2 at
lmax525 ~for example, the leading term of^Dx (2,0)

2 & is as
small as 2.5431025, while ^Dx~2,0!&

2'0.005 54!. Since the
mean squares may not be smaller than the respective sq
of the mean values, this means that omission of the la
term proportional to (kBT)

2 in Eq. ~8! ~being just the squared

r-
es
-
ted

-
en

or-

FIG. 2. Linear dependences of the thermal shifts^Dx(2 j ,0)& ~for
j50, . . . ,4! on the natural logarithm oflmax. The straight lines
were obtained from linear fits to the numerically calculated ‘‘da
points’’ in the lmax range from 12 to 25. The parameters a
v050.95,kc510219 J, andT5293 K.
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55 1815LARGE DEVIATIONS OF THE AVERAGE SHAPES OF . . .
shift itself! leads to meaningless values of the mean squ
for these modes.

The results shown in Fig. 2, along with the analogo
results obtained for the other modes and at different rela
volumes, give us high confidence that the dependenc
^Dx(2 j ,0)& on lmax is logarithmic. Linear regressions to th
numerically calculated dependences of^Dx(2 j ,0)& on the
natural logarithm oflmax ~taking only the ‘‘data points’’ ob-
tained for lmax>12! yielded practically ideal fits. The fitted
straight lines are included in Fig. 2. Writing this dependen
in the form

^Dxi&5
kBT

8pkc
~m i lnlmax1h i !, ~16!

the coefficientsm i ,h i can thus be determined with high a
curacy from our results obtained for the relatively sm
range of lmax values that can be handled numerically.@For
those values ofi in Eq. ~16! that correspond to symmetry
breaking deformations, of course,m i5h i50.# Assuming
that this logarithmic dependence reflects the actual phys
behavior correctly, we can readily estimate the~approximate!
overall thermal shifts comprising the contributions of all d
grees of freedom up to a realistic cutofflmax. The magnitude
of such a cutoff may be obtained by identifyinglmax
5AA0 /Amol, whereA054pRS

2 is the membrane area an
Amol is the typical area occupied by one~or a few! lipid
molecule~s! in the vesicle membrane. For giant vesicles, i.
vesicles whose fluctuations may be observed in a light
croscope,RS ranges from 5 to 50mm, while Amol'0.6–0.7
nm2 is typical for a single lipid molecule. Thu
lmax'103–105, wherelmax increases linearly with the charac
teristic vesicle sizeRS . For various values oflmax, we have
estimated the overall values of the thermal shifts in the lol
modes~l<16! and calculated the corresponding approxim
average shapes using Eq.~12!. Figure 3 shows forv050.95
the resulting shape functions together with that of the eq
librium shape. The large difference between the aver
shape obtained by extrapolation to the cutofflmax5105 and
the equilibrium shape is illustrated in Fig. 4~a!. The analo-

FIG. 3. Normalized shape functionsr ~q,w! of the equilibrium
shape (a), of the average shape as calculated forlmax525 (b), and
of the approximate average shapes estimated by extrapolatio
lmax5103 (c), lmax5104 (d), and lmax5105 (e). All shapes are
axisymmetric; therefore, the shape functions are shown in de
dence ofq. The parameters are the same as in Fig. 2.
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gous result obtained atv050.8 is shown in Fig. 4~b!. Using
Eq. ~13! we have also calculated the standard deviatio
Š(r2^r &)2‹1/2 at lmax525 ~the variances show only a mino
dependence onlmax and converge fast! for v050.95 and 0.8.
These standard deviations are included in the contour p
of the average shapes@Figs. 5~a! and 5~b!#, where they de-
note the mean width of visible fluctuations about the me
shapes.

to

n-

FIG. 4. ~a! Comparison of the equilibrium shape~part on the
left! with the approximate average shape~part on the right! obtained
by extrapolation tolmax5105 @v050.95; cf. curve (e) in Fig. 3#.
Both shapes were cut in half along the axis of rotation; one-hal
each is shown.~b! Illustration of the analogous result obtained
v050.8. The parameters arekc510219 J andT5293 K.

FIG. 5. Contour plots of the equilibrium shape~on the left! and
of the average shape as obtained forlmax5105 ~on the right, thick
line! at ~a! v050.95 and~b! v050.8. The contour of the averag
shape is enclosed by thin lines denoting the mean width of vis
fluctuations about this average shape. All shapes are axisymme
the vertical axis of rotation is included in each plot. The parame
are the same as in Fig. 4.
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1816 55HEINRICH, SEVŠEK, SVETINA, AND ŽEKŠ
It is important to note that only the average shape, mo
lated by visible fluctuations, can be observed in an opt
microscope. As illustrated in Figs. 4 and 5, this avera
shape may substantially deviate from the equilibrium sha
The thermal shift causes an apparently ‘‘static’’ deformat
that may be significantly larger than the visible shape un
lations and so it should be easily detectable in a light mic
scope. However, for this, one would need an accurate m
sure of the true values of the membrane area and the ve
volume because these are basic control parameters dete
ing the equilibrium shape. The only information about the
parameters that has been used so far in the analysis o
perimental observations was obtained from measuremen
the visible vesicle contours. As mentioned above, such m
surements can at most give the surface area and the vo
of the average shape, i.e., theprojectedmembrane area an
the projectedvesicle volume. Their deviations from the re
spective equilibrium values are given by Eqs.~14!. Using
Eq. ~16!, these deviations are rewritten as

^Dap&5
kBT

8pkc
(
i

n
]d1
]xi

U
0

~m i lnlmax1h i !

5
kBT

8pkc
~m~a!lnlmax1h~a!! ~17!

and analogously

^Dvp&5
kBT

8pkc
~m~v !lnlmax1h~v !!, ~18!

where

m~a,v ![(
i

n
]d1,2
]xi

U
0

m i , h~a,v ![(
i

n
]d1,2
]xi

U
0

h i . ~19!

Both the values of (]dj /]xi) u0 ~j51,2!, as well as of the
coefficientsmi and hi , converge fast towards zero asi is
increased. Thus one may use relatively low values for
upper limit n in the sums in Eqs.~19! to obtain the coeffi-
cientsm(a), h(a), m(v), andh(v) to a good approximation. A
different relative volumes, we have estimated these sum
taking into account the first nine nonvanishing contributio
The coefficientsm(v) of the logarithmiclmax dependence o
the projected volume were found to be so small that sign
cant effects of roundoff and truncation errors cannot be
cluded. However, this small logarithmic contribution m
safely be neglected even for largelmax values, so that the
deviation of the projected volume from the equilibrium vo
ume can be taken to be constant and proportional toh(v). All
other coefficients show clear dependences on the rela
vesicle volume that are depicted in Figs. 6~a! and 6~b!. The
dependence shown in Fig. 6~a! indicates that for closed
vesicles, the logarithmic dependence of the area reduc
cannot be described by a universal constant or by a unive
constantalone. Yet the range of values is in very good agre
ment with the valuemflat

(a)522 obtained in@10,12,13# for flat
membranes. The dependence ofm(a) on the relative volume
v0 could also not be explained by the presence of a cons
~but volume-dependent! surface tension because such a te
sion would show up only in the coefficienth(a) ~cf. @10#!. In
-
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our opinion, it is the combination of the two constraints
causing both a membrane tensionand a pressure difference
across the membrane~where both may fluctuate in order to
conserve the constraints near equilibrium!, that is responsible
for the dependence shown in Fig. 6~a!.

For practical purposes, we may conclude from our nu
merical calculations that area and volume measuremen
based on the analysis of the visible vesicle contours wi
generally result in too small values of both the membran
area and the vesicle volume. While the reduction of the e
fective volume can be taken to be constant and relative
small, one has to be aware that area measurements may s
stantially underestimate the true membrane area, with an
ror that depends logarithmically on the vesicle size. In th
interpretation of experimental observations, it is common t
combine the results of these two measurements into a sing
control parameter. This is the~apparent! relative volume, i.e.,
the renormalized projected relative volume given by Eq
~15!. With Eq. ~16! it becomes

^v̂p&5v01
kBT

8pkc
$~m~v !2 3

2v0m
~a!!lnlmax1h~v !2 3

2v0h
~a!%.

~20!

Table I gives estimates of^v̂p& for different relative volumes
and lmax values. It is seen that the measured values of th

FIG. 6. ~a! Coefficientm(a) of the logarithmiclmax dependence
of the relative deviation̂Dap& of the projected area from the true
membrane area@cf. Eq. ~17!# as a function of the relative vesicle
volume v0. ~b! Analogous plot showing the dependences of th
coefficientsh(a) @Eq. ~17!# andh(v) @Eq. ~18!# on v0. The param-
eters are the same as in Fig. 4.
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55 1817LARGE DEVIATIONS OF THE AVERAGE SHAPES OF . . .
important control parameter are likely to contain errors
large as 5% or even larger, depending on the value of
bending moduluskc . Thus an independent measure of me
brane area and vesicle volume could greatly increase the
curacy of experimental data obtained from the analysis
vesicle contours. Such a measurement is feasible by com
ing the contour analysis with a subsequent micropipette
piration of the observed vesicle. The latter technique gi
quite accurate values for membrane area and vesicle vol
~cf., e.g., @19,18#!. In addition, since the area-expansivi
modulus of vesicle membranes can readily be establishe
micropipette aspiration, such a measurement could hel
decide whether or not the observed vesicle is unilamella

Similar arguments apply to measurements of the me
brane bending moduluskc that are based on the analysis
thermal vesicle shape fluctuations. A logarithmic correct
of kc caused by invisible, short-wavelength undulations
flat membranes frequently has been discussed in the lit
ture ~e.g., @11–13#!. Yet for closed membranes subject
both constraints of constant area and volume the proble
more complex, and the theoretical results obtained so
allow us at most to conclude that thekc values deduced from
fluctuation experiments are effective values, i.e., that they
different from the true bending modulus of a given type
membrane. An important point illuminated by the prese
study is thatkc measurements employing vesicle shape fl
tuations can only be based on thevariancesof amplitudes of
basis functions, because only the average shape can b
termined from observations of the vesicle contours, wher
no direct information about the equilibrium shape is ava
able. In order to deduce the value ofkc from the measured
variances, one has to compare these variances with the
responding theoretical predictions. However, since the p
dicted variances depend on the location of the vesicle in
phase diagram of equilibrium shapes, such predictions
only be made if the relative volume of the vesicle is know
In view of the results of Table I, this leads to a first unce
tainty concerning the deducedkc values. But even if the true
relative volume could be estimated to a satisfactory degre
accuracy, one would still face the additional problem o
correct determination of the characteristic vesicle sizeRS
that enters the variances quadratically. If this characteri
size is estimated from the analysis of vesicle contours,
measurements will rather give the apparent vesicle sizeR̂S .
Thus the measuredeffectivebending modulusk̂c would be
related to the true modulus by

TABLE I. Estimates of the apparent relative volume^v̂p& @Eq.
~20!# for different values of the true relative volumev0 and at
different values oflmax. The range oflmax values corresponds
roughly to characteristic vesicle sizesRS ranging from 5 to 50mm.
The parameters arekc510219 J andT5293 K.

v0

^v̂p&

lmax5103 lmax5104 lmax5105

0.8 0.825 0.835 0.844
0.85 0.877 0.887 0.896
0.9 0.929 0.939 0.949
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k̂c5kcS R̂S

RS
D 2

5kc~11^Dap&!5kc1
kBT

8p
~m~a!lnlmax1h~a!!, ~21!

which would give a value significantly smaller thankc . It is
noteworthy that formflat

(a)522 @cf. Fig. 6~a! and the above
discussion on the logarithmic area reduction; Eq.~17!#, this
particular decrement of the bending modulus is in agreem
with the result obtained in@12#. However, application of Eq.
~21! to the interpretation of experimental observations wo
still leave the difficult task to estimate the relative volume
the vesicle. Therefore, this equation merely illustrates t
the correction of the bending modulus is rather sensitive
the way in which the measurements are performed and to
use of any additional information about the vesicle para
eters. Thus the deduction of the true bending modulus fr
fluctuation experiments seems to be generally problema
On the other hand, most of these problems could be eli
nated by an independent measurement of the vesicle’s
and volume, e.g., by pipette aspiration as suggested ab
@20#. Furthermore, the present formalism enables us to s
tematically explore the behavior of a fluctuating vesicle
dependence on its location in the phase diagram of equ
rium shapes, and so it may provide another way to estab
appropriate procedures for the interpretation of experime
results.

On conclusion of this section, it seems appropriate
comment on a few limitations of the present approach. F
of all, our central result, the logarithmic dependence of
thermal shift on the number of degrees of freedom, was
duced from the results of our numerical calculations. It is l
to future studies to verify this interesting finding analyticall
Yet, considering that analytical approaches often involv
number of simplifying assumptions, a numerical treatm
seems well justified when one’s task is to simulate an exp
mental situation as accurately as possible. It should be m
tioned that we have also applied the present formalism to
commonly used second-order model~e.g.,@3#! that employs
a second-order Taylor expansion in terms of the deviati
of the vesicle shape from a sphere and that is valid only
nearly spherical vesicles. Within this model, the logarithm
dependence of the thermal shift can easily be derived a
lytically and the resulting coefficients agree well with tho
obtained by the present approach for nearly spher
vesicles. The details of this calculation have not been
cluded in this paper mainly for the reason that some ba
assumptions of our formalism break down for nearly sphe
cal vesicles with relative volumesv0 close to 1. In short, the
problems are that~i! the subspace of states allowed by t
constraints contracts into one point asv0→1, i.e., it is inad-
equate to allow infinitely large limits of integration in th
integrals entering the expectation values, and~ii ! the energy
of the accessible states becomes more and more degen
so that the restriction to harmonic terms in the energy exp
sion is not justified anymore. In this case the results of
present approach, while mathematically still correct, wo
have little physical meaning. For this reason, we have cho
v050.95 as the upper limit of relative volumes considered
this paper. Larger relative volumes would also cause ano
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1818 55HEINRICH, SEVŠEK, SVETINA, AND ŽEKŠ
problem concerning the experimental observation itself.
of our above comments on experiments have implied that
mean shape of the observed vesicle can easily be identi
so that also the orientation of the rotational axis of the m
shape is defined to a good approximation. In this case,
calculations correspond to experiments in which the ro
tional axis of the mean shape lies~more or less! in the focal
plane. This is the experimental situation reported in@1#, with
the vesicle resting on the chamber bottom. On the ot
hand, as the vesicles become more spherical, it is har
identify the orientation of the mean shape because the la
itself tends towards a sphere@cf., e.g., Figs. 4~a! and 5~a!#
and because the distinction between deformational fluc
tions and rotational diffusion of the vesicle is increasing
difficult. This effect may actually become quite importa
already atv050.95 where the apparent relative volume^v̂p&
at lmax5105 is practically 1~not included in Table I!. How-
ever, lmax5105 corresponds to extremely large vesicles a
should be regarded as an upper limit for possiblelmax values.
For vesicle sizes not too large and for relative volum
v0<0.95, experiments that can be related to the predicti
of the present analysis are feasible@21#.

Finally, it should be mentioned that our derivations we
based on the assumption that the deviations from equilibr
are small. The fact that at typicalkc values the thermal shif
in the shape of a giant vesicle tends to be rather large
thus add uncertainty to quantitative theoretical predictio
This applies in particular to predictions based on an extra
lation such as the one to largelmax values employed above
s
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Thus the values of different quantities calculated for lar
values oflmax should be considered with caution; naturall
they can at most serve as rough estimates illustrating
general behavior of the fluctuating vesicle shape.

V. CONCLUSION

The present paper establishes a formalism to study t
mal shifts and their effect on the correlation functions
thermally excitable systems that are subject to constrai
This concept is applied to thermal shape fluctuations of li
vesicles taking place at constant values of the membrane
and the vesicle volume. The numerical results demonst
large deviations of the thermal average shapes from the w
established equilibrium shapes. The concept of thermal s
and average shape is linked to the logarithmic reduction
the effective membrane area that has been studied so far
for flat membranes. Dependences of both the reduction of
membrane area as well as the reduction of the vesicle vol
on the relative volume are presented and implications
related experiments are discussed.
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@1# H.-G. Döbereiner, E. Evans, U. Seifert, and M. Wortis, Phy
Rev. Lett.75, 3360~1995!.

@2# U. Seifert, Z. Phys. B97, 299 ~1995!; M. Jarić, U. Seifert, W.
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~1993!.
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