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Large deviations of the average shapes of vesicles from equilibrium:
Effects of thermal fluctuations in the presence of constraints
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In the absence of external stresses, the surface area and the volume of a closed, flaccid lipid vesicle are
practically constant. Thermal shape fluctuations of vesicles that are subject to these constraints recently have
been shown to induce a shift of the average shapes away from the equilizevortemperatuseshapes. Since
only the average shapes can be determined from observations by optical microscopy, it is important to establish
the magnitude of their deviation from the well-studied equilibrium shapes. In this paper we develop a formal-
ism to calculate this thermal shift, and we demonstrate that nonlinearities in the constraints may cause it to be
unexpectedly large. Allowing for arbitrary shape deformations, we present numerical calculations revealing a
logarithmic dependence of the thermal shift on the number of fluctuational degrees of freedom of the vesicle
membrane or, equivalently, on the number of lipid molecules constituting the membrane. As a consequence,
the surface areé'projected area’) and, to a lesser extent, the volurtiprojected volume”) of the average
shape are smaller than their true values. These numerical results are in general agreement with theoretical
predictions that have been made so far only for pieces of flat membranes but not for closed lipid membranes
subject to the constraints of both constant area and volume. Furthermore, we derive an expression for the
correlation function of deviations from equilibrium including terms of the orderlkgfT)? that involve the
(quadrati¢ thermal shift. We demonstrate that these terms may actually exceed the commonly used leading
term of the correlation function. This analysis suggests that the determination of the membrane bending
modulusk. from observations of thermal vesicle shape fluctuations should be based on the variances rather
than the correlation function§S1063-651X97)05902-3

PACS numbdss): 87.10+€, 05.40+j, 68.10—m

[. INTRODUCTION only recently have been tackled theoretically in various,
more systematic way8,2]. It was predicted that in the pres-
Flaccid phospholipid vesicles with volume-to-area ratiosence of constraints, a vesicle’s thermal average shape may
smaller than that of a sphere are known to exhibit thermatleviate from the equilibrium shapgthermal shift”) [2].
shape fluctuations that can be observed in an optical micrdexpanding the vesicle shape in a series of independent basis
scope[1]. While the different shapes of a fluctuating vesicle functions, the thermal shift may be represented by the aver-
are governed by the elastic bending energy of the vesiclage deviations of the amplitudes of basis functions from their
membrane, both its membrane area, as well as the volume efjuilibrium values. The lowest-order nonvanishing contribu-
the enclosed aqueous solution, remain practically constarion to this shift has been shown to be proportionakgd .
during observation. Such a vesicle is a typical example for &ince the leading term for a “typical fluctuation{(square
thermally excitable system that is subject to constrdih{2|. root of the amplitude-amplitude correlation function of de-
Vesicle shape fluctuations have been intensively studied exsations from equilibriuny is of the order of\kgT, it was
perimentally, mainly to deduce the value of the membraneargued[2] that the thermal shift should be small. On the
bending modulusk. [3]. The models used to interpret the contrary, we present numerical results revealing large values
experimental observations were usually based on a secondf the linear shift in the symmetry-conserving fluctuation
order expansion in terms of the deviations of the vesiclenodes. Moreover, we demonstrate that the shift diverges
shape from a sphere, thus restricting the analysis to nearlpgarithmically as the number of fluctuation modes included
spherical vesicles. Mathematical methods of much greaten the calculations is increased.
generality have been applied to study the equilibrium shapes To understand this effect of short-wavelength fluctua-
of vesicleq4,5]. The results have been arranged in a “phasetions, it is useful to recall first that for typical values of the
diagram” of equilibrium shapes that is in reasonable agreemembrane bending modulug~(10—-40kgT] the persis-
ment with experimental observatiofi,7,5. On the other tence lengtf9] of a phospholipid membrane is much larger
hand, general theoretical studies of the effect of thermal flucthan the characteristic vesicle size. It is justified, therefore, to
tuations on the vesicle shape have long been missing. Theeat the bilayer membranes considered here as “almost pla-
complications that arise from the presence of constraintgar” surfaces in the sense that they maintain a certain regular
mean shape. Nevertheless, on a microscopic scale a vesicle
membrane represents a highly dynamic system that exhibits,
*FAX: (+386 61 131-51-27. Electronic address: due to its small resistance to bending, permanent thermal
volkmar@sizif.mf.uni-lj.si undulations about the mean shape. Most of these undulations
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are too fast and too small in amplitude to be resolved in &xplained in Sec. Ill. Section IV presents the numerical re-
light microscope. Yet one has to be aware that an image dfults and discusses implications for related experiments. It is
an apparently smooth vesicle membrane comprises a largellowed by a short conclusion given in Sec. V.

number of superimposed “microstates” where each state is

characterized by a differently curved membrane. Although Il. CONSTRAINED ELUCTUATIONS

the curvatures involved may be small, the contributions of . ) ) »

the large number of independent fluctuation modes sum up to ' "€ Problem of constrained fluctuations is not specific to
result in a considerable vesicle-size-dependent reduction (yiesmle shapes; therefore, we will explain our treatment in
the visible, apparent membrane area. This entropic effect h en_eral terms in the following. We start from an energy po-
been noted quite some time ago, and it has been studied ntial W=W(x, ... X,) and  constraints(a<n) given by

. . i(X1,...X,)=0 (j=1,...). In the case of vesicle shape
mem — J n
detail for flat pieces of nonstretchable membrq6-13 fluctuations, the variable(, ... x,) will be the amplitudes

but not yet fpr closed membranes mcludmg smultaneouslyof independent, orthonormal basis functions. For a physical
both constraints of membrane area and vesicle volume. Con-

sidering an isolated membrane piece, it was shown that th stem in general, we identify them with Cartesian coordi-
9 P ’ -~ . nates in am-dimensional Euclidean phase space with basis
amount of membrane area that is taken up by mostly invis-

ible, short-wavelength undulations depends IogarithmicallyveCtorSii (i=1,._..,_n). : .
on the number of fluctuation modgs0—13. As a conse- The states within this phase space that simultaneously sat-

uence, a logarithmic correction of the bending modulus WaiSfy all a constraints form thén —a)-dimensional subspace
qredictéd[llg—liﬂ Incorporating the decreasg of effective of accessiblestates, meaning that the system is bound to
P ; ) P g . . . .~ move exclusively within this subspace. Considering only the
area into force balance equations via an “entropic tension,

the bending modulus of lipid membranes could be deduce nergies associated with points in this subspace, an equilib-

from low-pressure aspiration of vesicles into micropi ettesIum state is characterized by a minimum of the enevgy
[14] P P PP with respect to any othesiccessiblestate in the vicinity of

In these studies, the effective reduced area was taken ‘thls point. We assume that the subspace of accessible states

DDA : 2 “well behaved” near equilibrium, i.e(in the language of
be the mean area of the “projection” of the fluctuating MeM- jitferential geometry, that it is an(n—a)-dimensional Rie-

_k:ar;r;z F;f:: .,Or,:ltgn?rgllf n?ﬁirsesﬁj;tg;g '?Otggtg?]t'%na?;éh;‘epm'mannian manifoldM"~* that is continuous and differen-
J : Y, P broj tiable at least to order @& “hypersurface” embedded in the

erage shapeof the membrane piece. Analogously, we di : . :
. ; S : . . -dimensional phase spac@&his hypersurface is represented
identify a vesicle’s projected area with the area of its therma[:1 parameter form by

average shape, while the volume of the average shape Is
taken to be the “projected vesicle volume.” In this paper, we _ .
set up a numerical formalism to obtain the average vesicle A1, Gn-o) =Xa(A1 - Gn o)z

shape by calculating the expectation values of the amplitudes o+ X (A1 One a)in )
of the chosen set of basis functions describing the vesicle

shape. This is done in two steps. First, the equilibrium shap@here theq, (k=1,...n—«) are affine curvilinear coordi-

is obtained by minimizing the membrane bending energy ahates adopted to this surface. The origin of the new reference

constant values of membrane area and vesicle volume. Segame is chosen at the equilibrium poifitenoted below by

ond, the linear averages of those deviations from the equilibthe index 0, so that the equilibrium state is represented by

rium shape that conserve both constraints are calculateg, . .. 0.

Both parts of the calculation are carried out using consis- For the treatment of thermal fluctuations we need to con-

tently the same set of basis functions. This _calculat|on givesider only small deviations from equilibrium. Thus we may

us, at the same time, the values of the projected membrangplace the functions;(qy ,....0n_,) [i=1,...n; Eq.(1)] by

area and the projected vesicle volume as well as their logaheir expansions around the equilibrium point. For reasons

rithmic dependence on the number of fluctuation modes.  that will become evident below, this expansion is made up to
As another important consequence of the large thermahe third-order terms iy, i.e.,

shift, we reconsider the calculation of the correlation func-

tion [15] of a fluctuating vesicle. The shift may be expected n—a n—an-a

to enter this function in terms that are of higher order than = Axi(qy,....0n- )= > ageriy X blequlqk2

the commonly used leading term proportionalkigl. We k ki ke

outline a procedure to calculate thiegT)? contributions to Nn—an—an-a

the correlation function that contain the shift quadratically, +1 E E E cl e Te

and we show that they may indeed exceed the leading term. ° ki kp Kikakg™lka T
This procedure enables us to evaluate correctly the visible )

shape fluctuations represented by the mean-square deviations
from the mean shapg@rariances

The paper is organized as follows. In Sec. Il we outline ) : 3
the theoretical basis for our treatment of constrained fluctua= (¢°Xi /90, 30,0, and  Ci .= (3°Xi /30, Iqk,90k,)o-
tions in general terms and we derive the expressions to calHere and in the following we denote hy the deviations
culate the thermal shift as well as the correlation functionfrom equilibrium. Furthermore, throughout the paper the
The application of this formalism to the numerical computa-starting index of all sums is 1 and is omitte@ased on Eq.
tion of the thermal average shape of a fluctuating vesicle i$2), we are able to express both the thermal sfk;) as

with the expansion coefficientsa = (dxi/dq)lo. lez
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well as the correlation functiofAx; Ax; ) in terms of ex-  clude all those termpup to the order of KgT)?] in the cal-

pectation Va'ues involving 0n|y the new Coordina‘ﬁs Culation of the Correlation funCtion that Originate from Up to
So far, the expansion coefficieras, bl , , andc) , fourth-order deviations in the space @f, which makes it

define curvilinear coordinates, spanni%é an artl)itzr;ry necessary to include also the third-order terms in the expan-

(n—a)-dimensional surface containing the equilibrium point. sion (2).

Bv imposing aporooriate conditions on these expansion co- Assuming that the states allowed by the constraints are
y 1mp 9 approp L X 0homogeneously distributesithin the hypersurface of acces-
efficients, we will, in the following(i) ensure that the states

forming this surface fulfill the constraint$ii) choose suit- sible states, the average of an arbitrary funcigxy , .. Xy)

able directions for(the tangents fothe coordinatesy, at over all accessible states is given by
equilibrium, and(iii) ensure that the coordinateg are or-

thonormal. The first requirement is fulfillgdp to third order f T exp(— BAW)dq
at equilibrium if the first, second, and third derivatives of all (fy= Moo ®)
constraintsD; with respect to they, vanish at equilibrium. - '
(The tilde is used to denote the functional dependence on J ., exp(—BAW)dq
0x.) Thus M
~ n [The probability of an accessible state has been assumed to
‘9_DJ' :2 ‘?_Dl al=0 (39) be given by the Boltzmann distribution, i.8=1/kgT, and
IMkl, T X, ke dg=dqg;dqg,---dqg,_,.] Note that Eq.(5) is only correct if
the volume element in thg space does not depend on the
25 non 2n. o n _ position within this space. This is achieved by requiring that
9°D; _ 9°D; iy iy Dj| _ v -
0. S0, —2 2 Y aklak2+z v kk,—0,  the coordinates form an orthonormal coordinate system at
Ak, 7Yk, o 't 2 117M2[ g : o every point of theg space or, in other words, that the tangent
(Bb)  vectorsgS/iag, be everywhere orthonormal. It would be cum-
bersome to enforce this condition strictly; instead, we will
and require orthonormality “up to third order” at equilibrium.
3= nonoon 3 Thus we require(dS/aqy-3S/dq;)lo=4 (the orthogonality
9°D; _ 9°D; i1 02503 part of this condition is already contained in the requirement
90, 9k, 90k, o 1T 9%, X X, . ki ky kg that the directions of tangent vectors at equilibrium coincide
with those of eigenvectorsand, furthermore, that the first
M T nn 52D, and second derivatives of this orthonormality condition van-
+Z a_x-] CL1k2k3+E 2 I 3)1(. ish at equilibrium. The resulting conditions for the expansion
' o otz T ele - coefficients af, by, and ¢y, read (where kypz4
X(alb2, +aib?, +albl, )=0, =l..n-a)

n
(30 2| A, A, = Sk ky (63)
wherej=1,... gandk, k;,=1,...n—a.

Through the functionsAx;(q;,...,.0,—.) [EQ. (2)] the n

thermal energy of accessible states may be expressed as a > aj bl , =0, (6b)
function of new coordinated W=AW(q;,...,0n_,). AS- Tt e
suming thatthis energy potentiali.e., of accessible statgs N
has a harmonic shape near equilibrium, we neglect all i i i
higher-than-second-order terms in the energy expansion Z (bklkz k3k4+aklckzkak4):0' (6c)
around equilibrium. For arbitrarily chosen coordinatgs
the matrix of second derivatives of the energy with respect t&ventually, by combining the conditiori8a)—(3c) and(6a)—
those deviations that conserve the constrafnés, with re-  (6¢) with our choice for the directions of tangent vectors at
spect to theg,) is then diagonalized. Suppose we have choequilibrium, the system of curvilinear coordinatgg has
sen the coordinateg, in such a way that this matrix is al- been completely defined.
ready diagonallby requiring that the tangent vectors at Identifying f in Eq. (5) with Ax;, replacingAx; by the
equilibrium, (#S/dqy)lo, have the same directions as the expansion(2), inserting Eq.(4), and evaluating the resulting

eigenvectors of this matrjxThen, @ZW/r7Qj(9qk)|0: Oik Yk integrals up to the second orderdgnthe thermal shift in the
where they, denote the eigenvalues, and original Cartesian coordinates is obtained up to terms of the
o order ofkgT as
AW(Ay, - Gn-a) =7 2 Wl @ kT "= b,
“ (Axy=—- 2 —. (7)
2 T ow

The calculation of the eigenvalueg is consistent with a

second-order expansion of the constraints. Thus it would rein the same way, but including also thiesT)? terms gener-
quire one to include only the terms up to second ordey,in ated by fourth-orderg terms, the correlation function is
in the expansior{2). However, in the following we will in-  found to be
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n—a gligiz an-an-a alc?,  +azcl,  +bl b? +ibl b?
ak ak (kBT) kl k1k2k2 k1k2 k1k2 2

kq, “kikok kikq Tkok
<AXi1AXi2>:kBT2k 5 2 E 1 "t2h2 171 "2R2

Yk ki Tk Vi, Y,
n—a i1z sn—an-a glg?2  +a?2¢l  4pt p'2
a a (kgT) Ky ~kgKok ky ~kqkok kyky " kqk
k 7'k B 1 "1t2t2 1 "it2t2 1"2 "1t2
=kgT X H(AXi )(AX )+ — > : ()
k Yk ki Ky Vi, Yk,

These results illustrate how nonlinearities in the con-have calculated for a few representative examples also the
straints may qualitatively affect the behavior of the systemcoefficientsb'klk2 with k;#k,, and we found them to be

The first-order coefficienta, which are determined by the always significantly smaller than the values of thig. For
linearized constraints, define tiie—)-dimensional tangent these reasons it seems to be justified to assume that the last
“plane” to the hypersurface of accessible states at equilib{k;T)? term on the right-hand side of E¢) is small com-

rium, i.e., the tangent space that is spanned by the eigenvepared to the sum of the other two contributions, and so we
tors of the matrix of second derivatives of the energy withwill omit it in the following.

respect to deviations that conserve the constraints. This tan-

gent space represents a first-order approximation to the hy- Ill. AVERAGE VESICLE SHAPE

persurface of accessible states and it is related tqranyy)- . .

dimensional subspace spanned by a subset of origin?l Let us now apply this theoretical fram_ework to the calcu-
Cartesian coordinates by a mere linear transformation. On ation of the average shape of a fluctuating vesicle. We con-

the other hand, whenever the constraints are nonlinear, th der. v_e3|cle shapes Gtrbltrary.symmetry with th_e only
hypersurface of accessible statesusved In this case, pro- reitrlc_noln thatl the 1S_Eape.:,hare E mgle-valut()a d ;uncn%nsdog thti
jections of the accessible stat@ghich were assumed to be ffng{gcnaRinS(gs@ Wehne,res ;oiﬁfsefrcoamn thee o(:‘isg(i:rzI oi they )
hhomogenepusly disFributed Withinl this hyper;furﬁammto reference frame(,su’itably chosen inside the vesiglo the
tsit?/ g:‘r(tszjiaer(‘:t‘;%og’égztsiigﬁ?:s: g:gn%”?ﬁg:e' O;Qg_e%is vesicle surface. This shape function is expanded in the series
effect causes the energy potential to be asymmetric with re- (maxt 1)?
spect to thex;, which results in the nonvanishing thermal R(%,0)= > Xipi(de), (9)
shift. It is important to note that this effect is purely geo- [
metrical, i.e., it depends only on the shape of the hypersur- )
face of accessible states but not on the temperature. Mati{here pi(9,¢) are the functions of the complete set
ematically, this effect is reflected by the higher-than-first-1Y10, REV2Ym),Im(v2Y )} of real, orthonormal basis func-
order coefficients in the nonlinear transformation ER). tions derived from the spherical harmoni¢g, , andl sy is

The fact that the thermal shift is proportional kT, the c_utoff of the expansion if e.xpres.,sed in terms of the Iatte_‘r
whereas a “typical fluctuation” given by the leading term of functions. The energy governing different vesicle shapes is
(Ax; Ax; Y2 is of the order of ksT)“2 has led to the con- the membrane bending e_:ne@ﬁ,(i]. Itis the sum of a local
cIusilon [5] that the shift is small. However, given that the and a nonlocal contributiof.7] and, in general, both affect

. . . the shape fluctuations. However, in those regions in the
Eg:t[[é? ((87))]];:p?e::jec:(neac?ilf?gretﬁ:n}n(getg]:ngggfggf?igig?s phasge diagram .of equilibrium s_hapes where the nonlocal
it is impbrtant to establish also tr,1e magnitudes of these C(’)lgendmg energy 1S zero or small, its effect on the shape flup-
efficients. In the case of vesicle shape fluctuations, we havtuatlons IS very small as well and may be ngglected. In this

' ol tudy we restrict our treatment to this region and do not

) - i
Egndaég?;"forbsc;wg (;/r?jlgfsso?frigdrl](itﬂ:jee T;ffgfﬁgig; include nonlocal bending effects. The remaining local bend-
y y 9 9 igg energy reads for symmetric bilayer membranes

In this case, the nonlinearities in the constraints generat
quite large values of the thermal shift. These nonlinearities
do not enter the leading term of the correlation function, yet W= %kcf (C1+Cy)2%dA, (10
one would expect that in this case, they also have a signifi-

cant effect on this function. To establish the importance ofyherek, is the (local) membrane bending modulug, , are
this effect, we have included thé¢T) terms in the deriva- the principle curvatures, and integration is performed over
tion of Eq.(8). The result shows that the thermal shift affectsthe closed vesicle surface. Expressing this energy as well as
the correlation function directly in form of the products the constraints of constant membrane af@at in the form
(Ax; )(AX; ). These products may not be neglected if thep,=A—A,=0) and constant vesicle volumeDg=V
shift is large. On the other hand, we will assume in the fol-—V;=0) in terms of the shape functidR(9,¢) [5], we ar-
lowing that the nonlinearities of the constraints are repretive at the task to calculate fluctuations of a system with
sented to a good approximation by the second-order coeffenergy W=W(Xy,....X,) and with two constraints
cientsby,, and we will not attempt to include terms of even D AXy,...,X,,) =0, which interrelate ther=(l maxt1)? am-
higher order(which would be practically impossible in the plitudesX; of the basis functions of the shape expangieq.
numerical calculations For vesicle shape fluctuations, we (9)]. As usual, we introduce dimensionless quantities by a



55 LARGE DEVIATIONS OF THE AVERAGE SHAPES 6. .. 1813

normalization with respect to a sphekeith radiusRg) hav-
ing the same surface area as the vesicle. To distinguish nor- <r(ﬂ,(p)>=2 (Xil o+ {AX ) pi( 3, ), (12
I

malized quantities from the respective original ones, we de-

note all normalized quantities by small letters. Thus, for _ 2 i

! . . ) where, as beforen=(l .+ 1)°. The mean-square deviation
example, the energwy is measured in units of 8k, , while of the shape function(d @) from its mean(varianca is
r=R/Rs, X,=X/Rs, ¢;=C;Rs, €c. P i

As the first step, we calculate the equilibrium shape at ((r={r)A=(r3)—(r)2
given membrane area and vesicle volume. For a given set of
X; , the values of model quantitiggnergy and constraints

and, as needed, of their first and second derivatives with —Z E ((Ax; AXi,)
respect tok; are calculated numerically by a two-dimensional T2
integration over the full solid angle. Using the generalized —(AXi1>(AXi2>)pil(19,<P)pi2(19,<P)-

energy function
Using Eq.(8) and neglecting the last term on its right-hand

2 side, we find
] n-2 allalz
((r=(r >>2>— L(9,9)P1(,0) 2,
that includes the constraints via Lagrange multipligrsthe (13)

equilibrium values of amplitudes; and of Lagrange multi-

pliers are obtained by the Ritz method described in detail inrpe square root of this expression gives the standard devia-

[5]. tion of the shape function as a function of the spherical
To compute the thermal shiftAx;), we have to calculate gngles: it is a measure for the mean width of fluctuations at

the eigenvaluesy as well as the coefficients|, [Eq. (7)],  each point of the vesicle membrane.

whereas the third-order coefficierds , are not needed. In  Following Ref.[10], we call the area of the average shape

the practical calculations we first choose arbitrarily a solu-“projected area” (A,), while the volume of the average

tion out of the solution space of tHenderdeterminegdcon-  shape is called “projected volume™ and is denoted(M;,).

ditions (3a) and (6a). This solution space is most efficiently The normalized deviations of these two quantities from their

obtained by singular value decomposition of therPmatrix  equilibrium values are given up to the orderlT by

with elements §d;/ x; i)lo- The chosen solution represents a

preliminary set of first-order coefficients denotedaly Im-

posing condition(3b) on preliminary second-order coeffi- (Aay)= E

cientsb'klkz, making use of the equilibrium condition, and

introducing the generalized energy [Eq. (11)], the second Hereﬂvp>:<Vp>/‘3"7TR§, whereas the apparent relative vol-
derivatives of the energy with respect to tfreliminary) ume is defined with respect to a sphere whaose surface area is

affine coordinates), are found to be the apparent projected ared,,). Denoting byRs the radius
of this sphere, this apparent relative volume is

(Avp)= E (14)

n n

&Z\TV (92W* =t < > 3
Wy . =——] = ——| ata?.
Kiko 5CIk1‘9Qk2 i1 g 0"Xill9Xi2 e <Up>_ —(vo+<Avp))< )
0 0 R¢? Rs
Next, the matrix with elementw,  is diagonalized, which vo+(Avy) 3
1Ko =—————=p,+(Av,)—5vo({AQ,). (15
gives the eigenvalueg, [Egs.(4) and(7)], while the eigen- (1+(Aapy))*? vot(Avp)—3ve(Aa,). (195

vectors determine the directions of tangent vectors to the
subspace of ac_cgssmle states at equilibrium. Thus the final IV. NUMERICAL RESULTS AND DISCUSSION
first-order coefficients are given by
Our numerical calculations concentrate on the shape fluc-
_ tuations of vesicles with relative volumes, ranging from
= E E}—ejk, 0.8 to 0.95. The equilibrium shapes of these vesicles are
! axisymmetric with an additional reflection plane containing
the equator. The membrane bending modulus is taken to be
where gy, is the jth element of thekth eigenvector. The Kk =101 J, a typical value for phospholipid bilayef&s].
coefﬁmentsb' kk are then obtained from the systems of IlnearThe temperature is chosen to De=293 K. In the numerical
equations given by condition@b) and (6b). Finally, inser- computations, the largest possible value of the cutgff of
tion of the results into Eq7) (wherekgT is now divided by  the expansion of the shape function E®). is limited by the
8wk.) gives the thermal shift. It has been noted bef@@e  available computer memory. Presently, we are able to use
that contributions involving the zero eigenvalues correspondt,, values up to 25.
ing to rigid-body motions have to be excluded from the sum Before turning to the calculation of the thermal shift it is
in Eq. (7). useful first to rule out possible effects of an insufficient ac-
Then, the average vesicle shape is giveridy Eq. (9)] curacy of the method due to too small valuesl gf,. This
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FIG. 1. Smallest nonzero eigenvalugsof the matrix of second FIG. 2. Linear dependences of the thermal shift,; o)) (for
derivatives of the normalized bending energy with respect to defor]' =0,...,9 on the natural logarithm of,.. The straight lines

mations that conserve the constraints, as obtained at different valu@fere obtained from linear fits to the numerically calculated “data
of the cutoffl,,,, of the shape expansion. Twofold degenerate ei'points” in the |, range from 12 to 25. The parameters are
genvalues are marked by filled circles. These values were calculatgg=0.95,k,=1071° J, andT=293 K.

for an axisymmetric equilibrium shape with a relative volume

v0=0.95. Physically, the eigenmodes of an axisymmetric equilib- .
rium shape group into sectors that are characterized by a givefn€ could extendat the cost of computer time and memory

value of|m| and either all possible even or all possible d&d If usagg the range of volumes down tg,~0.6 by using higher

the eigenvalues are numbered in ascending order, the first five covalues ofl ,,,,. Relative volumes smaller tharn~0.6 cannot

respond to rigid-body motions and are zénot shown. The pair of  be considered because of the limitation of the present method

the smallest two nonzero eigenvalyeeries @)] corresponds to  to shapes that are single-valued functions of the spherical

|m|=2, event deformations breaking the rotational symmetry in angles.

the direction of shapes with symmetB,,,. The next eigenvalue Using Eq.(7) we have calculated the thermal shifts at

[represented by open circles, seriéj(corresponds to then=0, iferent values ofl,,,. For an equilibrium shape of given

odd4_ deformatlpn breaking the up-down mirror symmetry and symmetry, linear net shifts occur only in the symmetry-

leading to pearlike shapes. . .
conserving modescf. [2]) because all symmetry-breaking

can be done by inspecting the smaller eigenvalyeEq. f[uctuations “average out.” For the axisymmetric equilibt
(4)], which should not depend oh,,. For axisymmetric UM shapes consu_jered here, the symmetry-conserving
shapes there are five zero eigenvalues corresponding to rigig0des are characterized by=0 and even values df Iden-

body motions. We have “tuned” the accuracy of our nu- tifying the |r_1d|ces_ of amphtu_de_sq of these modes with the
merical computations such that ag=0.95, the calculated Ccorresponding pairs (20) of indices of spherical harmonics
values of these five eigenvalues are ffgr,=15 all smaller  Yzj0. Fig. 2 shows foj =0, . . . ,4 thethermal shifts obtained
than 10 . Another characteristic of axisymmetric shapes isatvo=0.95 as functions of the natural logarithmlgf,. It is

that all eigenvalues corresponding to deformations breakinglearly seen that the thermal shift in these modes depends on
the rotational symmetryi.e., m#0 deformations are two-  |ax. This can be understood by taking into account that for
fold degenerate, which is due to the equivalence of deformanonlinear constraints, adding degrees of freedom by increas-
tions in the directionsp=0 and /2, respectively. Figure 1 ing | s results in an uneven change of the density of pro-
shows the smalleshonzero eigenvalues(i.e., those that jected(accessiblestates along the Cartesian coordinate axes
dominate the near-equilibrium behavior of the fluctuatingx;. Since, in general, more states are added at a distance
shape calculated fow ,=0.95 as functions df,,,. It is seen from equilibrium than in its close vicinity, théabsolute

that already ak,,,,,=6 the “true” values of these eigenvalues thermal shift increases with,,,. By inspecting the values of
are reproduced with a very high accuracy. By inspectilig the coefficientsb, we found thatevery added degree of

(I maxt 1)>—2 eigenvalues as computed for differépt, val-  freedom affects, through the nonlinear constraints, the shifts
ues we found that most eigenvalues remain unaffected by an all symmetry-conserving modes. For the modes depicted
increase ofl ... Only those 4., eigenvalues that are the in Fig. 2, the shift is already quite large at the highlgst,
largest ones at a giveln,,, experience a noticeable correc- value used. It is worth comparing the squares of these ther-
tion when their values are computed at the next higher valuenal shifts(Ax(Zj,OQ2 with the lowest-order contributions to

of I ,ax- However, these eigenvalues are so ldtheir values the mean square@Ax(sz,OQ. The latter values are readily
being of the order ofl &) that they matter little for the obtained from the first term on the right-hand side of ).
fluctuations. It should be mentioned that at lower relativeFor j=0,1,2 the leading terms of the mean squares are found
volumes, the eigenvalues “stabilize” only at higher valuesto be smaller than the respective values (mx(zj'opz at

of | ,ax- FOr example, ab,=0.8 any result obtained with |,,~=25 (for example, the leading term GﬁfAX(ZZYOQ is as

| max<16 Will involve significant uncertainties caused by ansmall as 2.5%10°°, while <Ax(2,0)>2~0.005 54. Since the
inaccurate assessment of the true eigenvalues. This som@ean squares may not be smaller than the respective squares
what restricts also the applicability of the present method t@f the mean values, this means that omission of the large
vesicles with relative volumes,=0.8, although principally term proportional to KsT)?in Eq.(8) (being just the squared
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13 @) (a) (b)

FIG. 3. Normalized shape functiomg9,¢) of the equilibrium
shape &), of the average shape as calculated fo;,=25 (b), and
of the approximate average shapes estimated by extrapolation to FIG. 4. (a) Comparison of the equilibrium shagpart on the
Imax=10% (C), Imax=10" (d), andl,,,=10° (e). All shapes are |eft) with the approximate average shapart on the rightobtained
axisymmetric; therefore, the shape functions are shown in deperby extrapolation td max=105 [vo=0.95; cf. curve é) in Fig. 3].
dence ofd. The parameters are the same as in Fig. 2. Both shapes were cut in half along the axis of rotation; one-half of

each is shown(b) lllustration of the analogous result obtained at

shift itself) leads to meaningless values of the mean squares=0.8. The parameters ake=10"1°J andT=293 K.

for these modes. | , _08is sh - .
The results shown in Fig. 2, along with the analogousgous result obtained {,=0.8 is shown in Fig. @). Using

results obtained for the other modes and at different relatiqu' (13 we have also calculated the standard deviations

volumes, give us high confidence that the dependence Jr—(r)) )" atl ;=25 (the variances shgw only a minor

(AX(2j.0) ON |y is logarithmic. Linear regressions to the ependence ohy,, and converge fasfor v4=0.95 and 0.8.

numefically calculated dependences (@) on the These standard deviations are included in the contour plots
i, .

natural logarithm of ,,,, (taking only the “data points” ob- of the average shapéElgs.. 'E(a) and Sb).]’ where they de-

tained forl,,=12) yielded practically ideal fits. The fitted note the mean width of visible fluctuations about the mean

straight lines are included in Fig. 2. Writing this dependence>laPes.

in the form
@

kgT
(Axi>: 8k (milnl ot 71), (16)
c

the coefficientsu; , »; can thus be determined with high ac-
curacy from our results obtained for the relatively small
range ofl .. values that can be handled numericalllfor N\
those values of in Eq. (16) that correspond to symmetry- ; \'g
breaking deformations, of course;= 7;=0.] Assuming ! !
that this logarithmic dependence reflects the actual physical
behavior correctly, we can readily estimate tapproximatg
overall thermal shifts comprising the contributions of all de-
grees of freedom up to a realistic cutbff,,. The magnitude

of such a cutoff may be obtained by identifyinig,.,
=Ao/Amo, Where Ag=47R3% is the membrane area and
Ao IS the typical area occupied by orfer a few lipid
moleculds) in the vesicle membrane. For giant vesicles, i.e.,
vesicles whose fluctuations may be observed in a light mi-
croscopeRg ranges from 5 to 5Qum, while A,,~0.6—0.7

nm? is typical for a single lipid molecule. Thus

| nax=10°—1C, wherel .. increases linearly with the charac-
teristic vesicle sizédkg. For various values df,,.,, we have
estimated the overall values of the thermal shifts in thellow- £ 5. contour plots of the equilibrium shagen the lefi and

modes(l <16) and calculated the corresponding approximateys the average shape as obtained lfgg,=10" (on the right, thick
average shapes using H42). Figure 3 shows fovq=0.95  |ine) at (a) v,=0.95 and(b) v,=0.8. The contour of the average
the resulting shape functions together with that of the equishape is enclosed by thin lines denoting the mean width of visible
liorium shape. The large difference between the averagfuctuations about this average shape. All shapes are axisymmetric;
shape obtained by extrapolation to the cutgff,=10° and the vertical axis of rotation is included in each plot. The parameters
the equilibrium shape is illustrated in Fig(@ The analo- are the same as in Fig. 4.

(b)
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It is important to note that only the average shape, modu- 1.96 1
lated by visible fluctuations, can be observed in an optical 198 .m
microscope. As illustrated in Figs. 4 and 5, this average ' e
shape may substantially deviate from the equilibrium shape. 2 - "
The thermal shift causes an apparently “static” deformation w502 4 R
that may be significantly larger than the visible shape undu- 204 1
lations and so it should be easily detectable in a light micro- "2
scope. However, for this, one would need an accurate mea- 2061
sure of the true values of the membrane area and the vesicle 2081
volume because these are basic control parameters determin- 213"
ing the equilibrium shape. The only information about these 212 . . .
parameters that has been used so far in the analysis of ex- 0.8 0.85 09 0.95
perimental observations was obtained from measurements ofa) Vo
the visible vesicle contours. As mentioned above, such mea-
surements can at most give the surface area and the volume 1.2 1
of the average shape, i.e., theojectedmembrane area and RIE T -
the projectedvesicle volume. Their deviations from the re- 1.6 TR .
spective equilibrium values are given by E¢§4). Using 1.8 B
Eq. (16), these deviations are rewritten as e 5 T, n@®
2.2 4
kBT " &dl 2.4 .
<Aap>: ch EI 5_)(| O(Milnl maxt 77i) 264 o P e n(v)
284 ..
kgT -3 1 e
= 8:’kc (M(a)lnlmax+ ﬂ(a)) (17) 3.2 . . .
0.8 0.85 0.9 0.95
and analogously (b) Vo
kBT . . (a) . .
(Avp)= K (Il pat 77, (18) FIG. 6. (_a) Coeﬁlc_lent,u of the Ioga_lrlthmlcl max dependence
TKe of the relative deviatioqAa,) of the projected area from the true

membrane arefcf. Eq. (17)] as a function of the relative vesicle
where volume v,. (b) Analogous plot showing the dependences of the
" coefficients7® [Eq. (17)] and #*) [Eq. (18)] on v,. The param-
L2 ﬂ(a'v)EZ le n. (19 eters are the same as in Fig. 4.

I
° ° our opinion, it is the combination of the two constraints,

Both the values of 4d;/dx;)|, (j=1,2), as well as of the causing both a membrane tensiand a pressure difference
coefficientsy; and 7, converge fast towards zero ass  across the membran@here both may fluctuate in order to
increased. Thus one may use relatively low values for theonserve the constraints near equilibrjuthat is responsible
upper limitn in the sums in Eqs(19) to obtain the coeffi- for the dependence shown in Figah
cientsu®, 7@, 4 and 7" to a good approximation. At For practical purposes, we may conclude from our nu-
different relative volumes, we have estimated these sums byerical calculations that area and volume measurements
taking into account the first nine nonvanishing contributionsbased on the analysis of the visible vesicle contours will
The coefficientsu™ of the logarithmicl max dependence of generally result in too small values of both the membrane
the projected volume were found to be so small that signifi-area and the vesicle volume. While the reduction of the ef-
cant effects of roundoff and truncation errors cannot be exfective volume can be taken to be constant and relatively
cluded. However, this small logarithmic contribution may small, one has to be aware that area measurements may sub-
safely be neglected even for lardig,, values, so that the stantially underestimate the true membrane area, with an er-
deviation of the projected volume from the equilibrium vol- ror that depends logarithmically on the vesicle size. In the
ume can be taken to be constant and proportionaf'tb Al interpretation of experimental observations, it is common to
other coefficients show clear dependences on the relativeombine the results of these two measurements into a single
vesicle volume that are depicted in Figga)oand &b). The  control parameter. This is tHepparentrelative volume, i.e.,
dependence shown in Fig.(@ indicates that for closed the renormalized projected relative volume given by Eq.
vesicles, the logarithmic dependence of the area reductiofl5). With Eq. (16) it becomes
cannot be described by a universal constant or by a universal
constanilone Yet the range of values is in very good agree- . keT
ment with the valug.{®)= — 2 obtained if10,12,13for flat (V) =Vo™ 8k, {(1 = 3vou )Nl paxt 7' = Fvon' @}
membranes. The dependenceu? on the relative volume (20)
v, could also not be explained by the presence of a constant
(but volume-dependensurface tension because such a ten-Table | gives estimates ¢b,) for different relative volumes
sion would show up only in the coefficient® (cf.[10]). In  and |, values. It is seen that the measured values of this
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TABLE |. Estimates of the apparent relative volurqe,) [Eq. ) és 2
(20)] for different values of the true relative volumg, and at ke=Kke —)
different values ofl ... The range ofl,,, values corresponds Rs
roughly to characteristic vesicle sizBg ranging from 5 to 5Qum. kT
The parameters ate.=10"'° J andT=293 K. =Kko(1+(Aag)) =k + 8i (L@l ot 7)), (21)
T

(0! which would give a value significantly smaller thip. It is
vo | max=10° | max=10" | max=10° noteworthy that foru{®)=—2 [cf. Fig. 6@ and the above
discussion on the logarithmic area reduction; By)], this

0.8 0.825 0.835 0.844 . . LT

particular decrement of the bending modulus is in agreement
0.85 0.877 0.887 0.896 with the result obtained ifiLl2]. However, application of E
0.9 0.929 0.939 0.949 ) » app 9.

(21) to the interpretation of experimental observations would
still leave the difficult task to estimate the relative volume of
the vesicle. Therefore, this equation merely illustrates that
important control parameter are likely to contain errors aghe correction of the bending modulus is rather sensitive to
large as 5% or even larger, depending on the value of théhe way in which the measurements are performed and to the
bending moduluk, . Thus an independent measure of mem-use of any additional information about the vesicle param-
brane area and vesicle volume could greatly increase the aeters. Thus the deduction of the true bending modulus from
curacy of experimental data obtained from the analysis ofluctuation experiments seems to be generally problematic.
vesicle contours. Such a measurement is feasible by combii®n the other hand, most of these problems could be elimi-
ing the contour analysis with a subsequent micropipette agiated by an independent measurement of the vesicle’s area
piration of the observed vesicle. The latter technique givegnd volume, e.g., by pipette aspiration as suggested above
quite accurate values for membrane area and vesicle voluni@0]. Furthermore, the present formalism enables us to sys-
(cf., e.g.,[19,18). In addition, since the area-expansivity tematically explo_re the k_)ehz_ivior of a fluctyating vesicle_i_n
modulus of vesicle membranes can readily be established ependence on its location in the phase diagram of equilib-

micropipette aspiration, such a measurement could help tBUM shapes, and so it may provide another way to establish
decide whether or not the observed vesicle is unilamellar. @PPropriate procedures for the interpretation of experimental

Similar arguments apply to measurements of the memfesults. . . . . .
On conclusion of this section, it seems appropriate to

ran nding modulus. that ar n the analysis of .
brane bending modulug, that are based on the analysis o comment on a few limitations of the present approach. First

thermal vesicle shape fluctuations. A logarithmic correction .
L . of all, our central result, the logarithmic dependence of the
of k. caused by invisible, short-wavelength undulations of

- thermal shift on the number of degrees of freedom, was de-
) Yuced from the results of our numerical calculations. It is left
ture (e.g., [1,1_13)' Yet for closed membranes subject to to future studies to verify this interesting finding analytically.
both constraints of constant area and volume the problem iget considering that analytical approaches often involve a
more complex, and the theoretical results obtained so fag mber of simplifying assumptions, a numerical treatment
allow us at most to conclude that tkgvalues deduced from  seems well justified when one’s task is to simulate an experi-
fluctuation experiments are effective values, i.e., that they argental situation as accurately as possible. It should be men-
different from the true bending modulus of a given type oftioned that we have also applied the present formalism to the
membrane. An important point illuminated by the presentcommonly used second-order modelg.,[3]) that employs
study is thatk, measurements employing vesicle shape fluc-a second-order Taylor expansion in terms of the deviations
tuations can only be based on th&riancesof amplitudes of  of the vesicle shape from a sphere and that is valid only for
basis functions, because only the average shape can be dearly spherical vesicles. Within this model, the logarithmic
termined from observations of the vesicle contours, whereadependence of the thermal shift can easily be derived ana-
no direct information about the equilibrium shape is avail-lytically and the resulting coefficients agree well with those
able. In order to deduce the value kof from the measured obtained by the present approach for nearly spherical
variances, one has to compare these variances with the coresicles. The details of this calculation have not been in-
responding theoretical predictions. However, since the preeluded in this paper mainly for the reason that some basic
dicted variances depend on the location of the vesicle in thassumptions of our formalism break down for nearly spheri-
phase diagram of equilibrium shapes, such predictions cacal vesicles with relative volumes, close to 1. In short, the
only be made if the relative volume of the vesicle is known.problems are thati) the subspace of states allowed by the
In view of the results of Table I, this leads to a first uncer-constraints contracts into one point@ag—1, i.e., it is inad-
tainty concerning the deducddq values. But even if the true equate to allow infinitely large limits of integration in the
relative volume could be estimated to a satisfactory degree dhtegrals entering the expectation values, éndthe energy
accuracy, one would still face the additional problem of aof the accessible states becomes more and more degenerate,
correct determination of the characteristic vesicle dze so that the restriction to harmonic terms in the energy expan-
that enters the variances quadratically. If this characteristision is not justified anymore. In this case the results of the
size is estimated from the analysis of vesicle contours, theresent approach, while mathematically still correct, would
measurements will rather give the apparent vesicle Rize have little physical meaning. For this reason, we have chosen
Thus the measuredffectivebending modulusk,. would be  v,=0.95 as the upper limit of relative volumes considered in
related to the true modulus by this paper. Larger relative volumes would also cause another
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problem concerning the experimental observation itself. AllThus the values of different quantities calculated for large
of our above comments on experiments have implied that thealues ofl 5, should be considered with caution; naturally,
mean shape of the observed vesicle can easily be identifiethey can at most serve as rough estimates illustrating the
so that also the orientation of the rotational axis of the meameneral behavior of the fluctuating vesicle shape.

shape is defined to a good approximation. In this case, our

calculations correspond to experiments in which the rota-

tional axis of the mean shape liémore or lessin the focal V. CONCLUSION

plane. This is the experimental situation reportefilil with . . s
the vesicle resting on the chamber bottom. On the other The present paper establishes a formalism to study ther

hand. as the vesicles become more spherical. it is hard mal shifts and their effect on the correlation functions of
identi7fy the orientation of the mean shape beca{use the latttt?]ermally excitable systems that are subject to constraints.
itself tends towards a sphefef., Fips ) and 5a)] “his concept is applied to thermal shape fluctuations of lipid

& Sp » €.g., FIgs. . vesicles taking place at constant values of the membrane area
and because the distinction between deformational fluctu ind the vesicle volume. The numerical results demonstrate
tlpqs and rptatlonal diffusion of the vesicle IS mc_:reasmglylarge deviations of the tHermaI average shapes from the well-
difficult. This effect may actually become quite Important established equilibrium shapes. The concept of thermal shift
already at ,=0.95 where the apparent relative volufag,)

atl=10%is practically 1(not included in Table)l How- and average shape is linked to the logarithmic reduction of

ever |- —10° corresnonds to extremelv large vesicles an dthe effective membrane area that has been studied so far only
»max P tremely larg for flat membranes. Dependences of both the reduction of the
should be regarded as an upper limit for possiplg values.

. ; A membrane area as well as the reduction of the vesicle volume
For vesicle sizes not too large and for relative volumes

) .. on the relative volume are presented and implications for
v(<0.95, experiments that can _be related to the predlctlon§elated experiments are discussed.
of the present analysis are feasip].

Finally, it should be mentioned that our derivations were
based on the assumption that_the deviations from equlllpnum ACKNOWLEDGMENTS
are small. The fact that at typickl values the thermal shift
in the shape of a giant vesicle tends to be rather large may We would like to thank U. Seifert and M. Wortis for
thus add uncertainty to quantitative theoretical predictionsfruitful discussions. This work was funded by The Ministry
This applies in particular to predictions based on an extrapoef Science and Technology of the Republic of Slovenia

lation such as the one to lardgg,, values employed above. Grant No. J3-7033-381-96.

[1] H.-G. Daoereiner, E. Evans, U. Seifert, and M. Wortis, Phys.[10] W. Helfrich, Z. Naturforsch. Teil C30, 841 (1979; W. Hel-

Rev. Lett.75, 3360(1995. frich and R.-M. Servuss, Nuovo Cimen8y 137 (1984.
[2] U. Seifert, Z. Phys. B97, 299(1995; M. Jarig U. Seifert, W.  [11] L. Peliti and S. Leibler, Phys. Rev. Lefi4, 1690(1985.
Wintz, and M. Wortis, Phys. Rev. B2, 6623(1995. [12] W. Helfrich, J. Phys(Parig 46, 1263(1985.

[3] M. Schneider, J. Jenkins, and W. Webb, J. P&. 1457  [13] F. David and S. Leibler, J. Phy&France Il 1, 959 (1991).
(1984); J. F. Faucon, M. D. Mitov, P. Meard, I. Bivas, an_(_j P. [14] E. Evans and W. Rawicz, Phys. Rev. L&, 2094 (1990.
Bothorel, J. Phys(Parig 50, 2389(1989; H. Duwe, J. K&,  [15] Throughout the paper, we abbreviate by “correlation func-
and E. Sackmanribid. 51, 945(1990; M. D. Mitov, J. Fau- tion” the amplitude-amplitude correlation function of the de-
con, P. Mégard, and P. Bothorel, Adv. Supramol. Che2n93 viations of the amplitudes of basis functiofishosen to de-
(1992; G. Niggemann, M. Kummrow, and W. Helfrich, J. scribe the vesicle shap&om their equilibrium values.

Phys.(Francg Il 5, 413(1995. [16] W. Helfrich, Z. Naturforsch. Teil (28, 693 (1973.

[4] H. J. Deuling and W. Helfrich, J. PhygParig 37, 1335 v.v . v .
(1976; V. Heinrich, M. Brumen, R. Heinrich, S. Svetina, and [17) 21 z%zc(‘lg'ézs"e“”a' B. Bks and R. E. Waugh, Biophys. J.

B. Zeks J. Phys(France Il 2, 1081(1992; W. Wintz, H.-G. o .
Dobereiner, and U. Seifert, Europhys. Led8, 403 (1996. [18] V. Heinrich and R. E. Waugh, Ann. Biomed. Eng4, 595

[5] V. Heinrich, S. Svetina, and B.ek§ Phys. Rev. E8, 3112 (1996.
(1993. [19] E. Evans and D. Needham, J. Phys. Ch&#).4219(1987.

[6] S. Svetina and B. &3 Eur. Biophys. J17, 101 (1989. [20] We note that the determination kf is further complicated in

[7] U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev44, 1182 view of two more control parameters involved through the
(199); L. Miao, U. Seifert, M. Wortis, and H.-G. biereiner, nonlocal bending energy, i.e., the nonlocal bending modulus
Phys. Rev. E49, 5389(1994). and the reference difference of monolayer areas. It is left to

[8] M. Peterson, J. Math. Phy26, 711(1985; J. Appl. Phys57, future studies to establish the range in the phase diagram of
1739(1985; M. Peterson, H. Strey, and E. Sackmann, J. Phys. equilibrium shapes where nonlocal bending effects become
(France 1l 2, 1273(1992. important. The observations reported i certainly belong to

[9] P. G. de Gennes and C. Taupin, J. Phys. Chef).2294 this range.

(1982. [21] V. Heinrich et al. (unpublishegl



